

Bacterium		Penicillin G	Cloxacillin	Streptomycin	Ceftiofur	Tetracycline
Arcanobacterium	MIC	< 2	< 2	Streptomycin 4	< 2	s 2
pyogenes	MBEC	> 1024	> 1024	256	> 1024	> 1024
Staphylococcus	MIC	2	<2	128	<2	<2
aureus	MBEC	> 1024	512	> 1024	256	512
Staphylococcus	MIC	16	< 2	512	< 2	32
hvicus	MBEC	> 1024	4	> 1024	128	256
Streptococcus	MIC	< 2	<2	64	<2	<2
agalactiae	MBEC	> 1024	> 1024	256	> 1024	> 1024
Streptococcus	MIC	< 2	52	32	< 2	<2
dvsgalactiae	MBEC	< 2	< 2	64	< 2	4
Streptococcus suis	MIC	< 2	< 2	128	< 2	32
	MBEC	8	< 2	128	< 2	32
Corvnebacterium	MIC	< 2	< 2	16	< 2	< 2
renale	MBEC	> 1024	> 1024	128	> 1024	1024
Corvnebacterium	MIC	< 2	< 2	256	< 2	< 2
pseudotuberculosis	MBEC	> 1024	> 1024	256	1024	256

TOXICITY

Local:	Summary of studies performing cell line experiments					
Antoci V,	2007	Cipro / Tobra / Vanco	preosteoblasts, prechondrocy-tes			
Edin ML,	1996	Cefazolin / Vancomycin	MG-63 osteoblast			
Ince A,	2007	Gentamicin	C2C12 cells			
Kucera T,	2017	Gentamicin / Vancomycin	Mesenchyma I Stem Cells			
Lewis CS	2011	Gentamicin	Rat calvarial osteoblasts			
Miclau T	1995	aminoglycosides.	MG-63 osteoblast			
Naal FD,	2008	clindamycin	Human osteoblasts			
Pilge H	2016	Cefazolin	Bone marrow mononuclear cells			
Rathbone CR	2011	21 antibiotics	Human osteoblasts			
Salzmann GM	2007	cefuroxime	Human osteoblasts			

Conclusions:

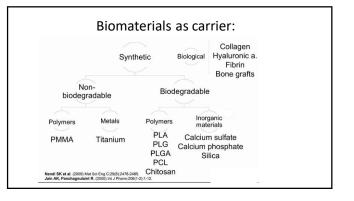
Vancomycin was found to be the least osteotoxic antibiotic. It has a favorable elution profile both *in vitro* and *in vivo* due to its ideal molecular weight. (gram +)

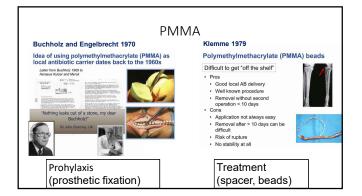
Tobramycin appears to be less osteotoxic compared to gentamicin (gram -)

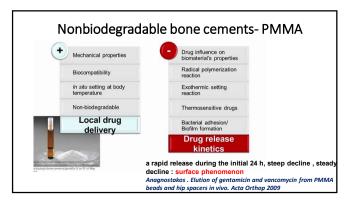
Systemic : summary of animal studies and human trials

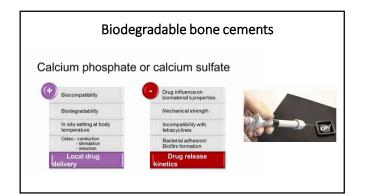
The serum levels of locally used antibiotics are typically too low to cause systemic effects.

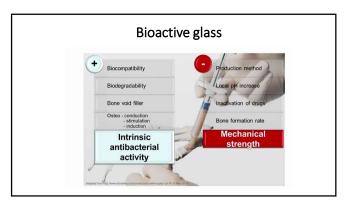
Turner TM, Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res 2005

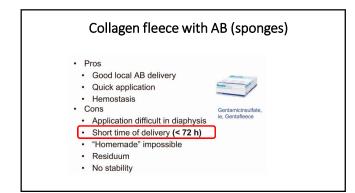

Wahlig H, The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study J Bone Joint Surg Br 1978

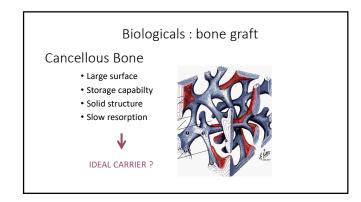

Eckman JB, Wound and serum levels of tobramycin with the prophylactic use of tobramycin-impregnated polymethylmethacrylate beads in compound fractures. Clin Orthop Relat Res 1988

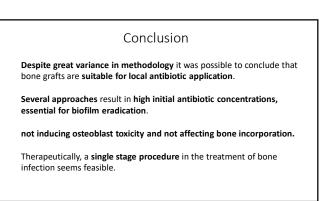

Walenkamp GH, Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res 1986

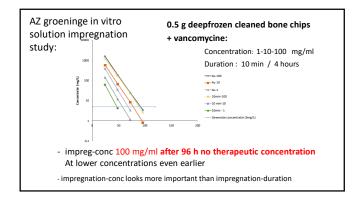

To date, no known cases of allergic reaction to local antibiotics have been published.

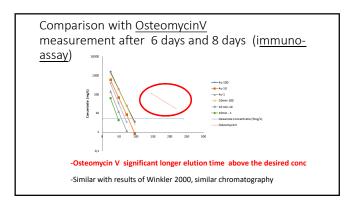


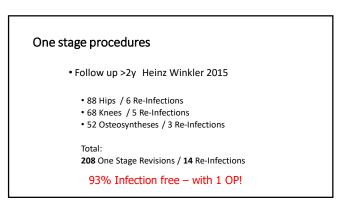











Review: Mater Thesis proposed to achieve the degree of master in medicine by Arne PEETERS KU Leuven Faculty of medicine PRISMA flowchart Promotor: Prof. dr. Lieven THORREZ Mentor: dr. Guy PUTZEYS Leuven, 2018-2019

Conclusion

- Local AB are an essential part of the treatment of PJI and FRI
- Vancomycine (gr +) and tobramycine (Gr-) are safe to use locally
- Current carriers have suboptimal release characteristic for treatment Bonegraft seems promising
- One stage surgery
- Weak clinical scientific evidence