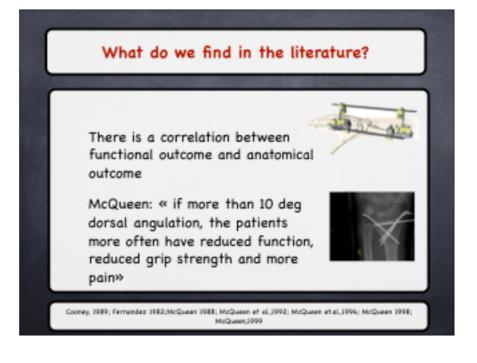
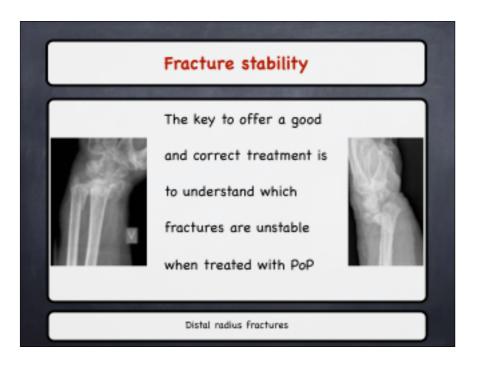
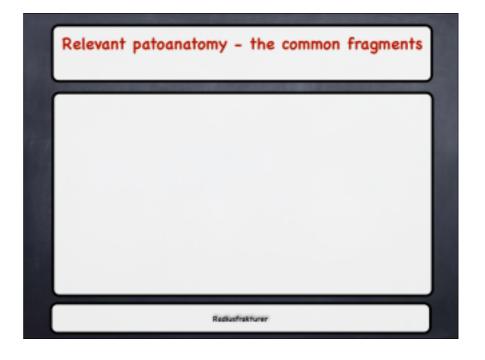
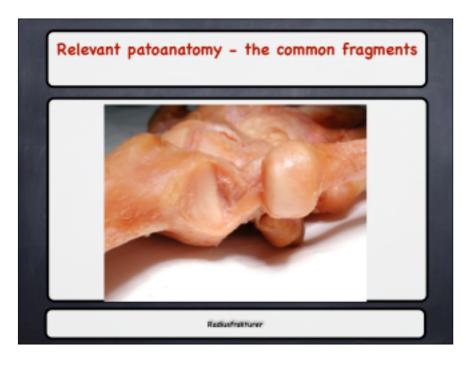


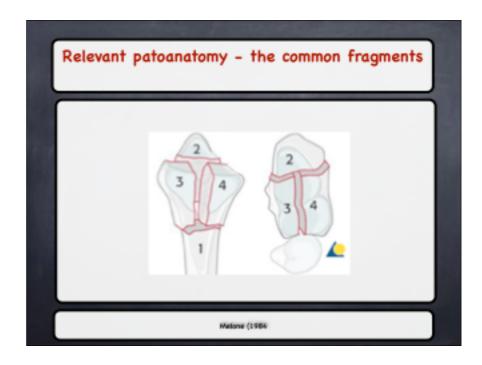
• No one knows! • BUT there is a relationship between anatomy and function Member of common series society (R)

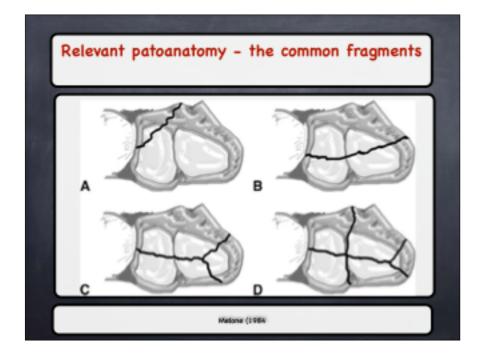





Cooney, 1989; Fernandez 1982;McQueen 1988; McQueen et al.,1992; McQueen et al.,1994; McQueen 1998;


McQueen,1999





How to predict instability

J B J S

This is an enhanced PDF from The Journal of Borne and Joint Surgery The PDF of the article you respectful follows this cover page.

Prediction of Instability in Distal Radial Fractures

P.J. Mackenney, M.M. McQueen and R. Elton J Bone John Sury Am. 2006;58:1944-1951. doi:10.2106/f885.Dit2520

Unstable distal radius fractures

Which fractures are unstable?

The more important factors to predict loss of reduction:

Unstable distal radius fractures

How to predict instability

THE JOURNAL OF BONE & JOENT SURGERY

TDOTO

All Fractures

For the prediction of carpal malalignment (R' = 0.12): X = (0.03 × age) - 0.56 (if independent) - 0.97 (if comminution type = none) - 0.46 (if comminution type = dorsal and volar) + 0.34 (if AO/OTA subgroup = 2) + (0.0017 × dorsal angle at presentation) - 2.14.

P1 The probability of instability or carpal malalignment can be expressed as a percentage with use of the following P3 conversion equation:

Probability (%) = $([e'] \times 100)/(1 + e')$

Unstable distal radius fractures

Which fractures are unstable?

The more important factors to predict loss of reduction:

Old age

Which fractures are unstable?

The more important factors to predict loss of reduction:

Old age All types of comminution

Unstable distal radius fractures

Which fractures are unstable?

The more important factors to predict loss of reduction:

Old age All types of comminution Loss of radial length High Energy

Unstable distal radius fractures

Which fractures are unstable?

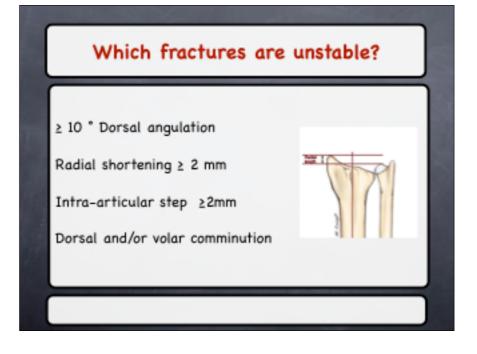
The more important factors to predict loss of reduction:

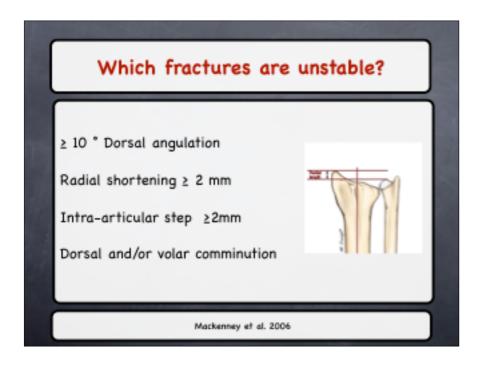
Old age All types of comminution Loss of radial length

Unstable distal radius fractures

Which fractures are unstable?

The more important factors to predict loss of reduction:


Old age
All types of comminution
Loss of radial length
High Energy

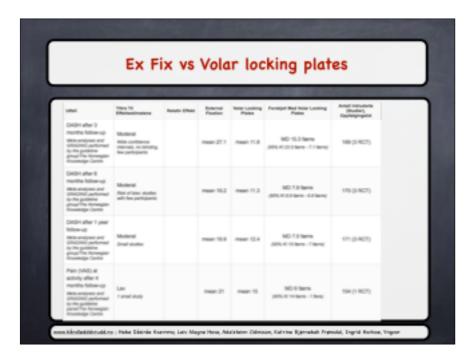

Loss of radial tilt (dorsaly/volarly)

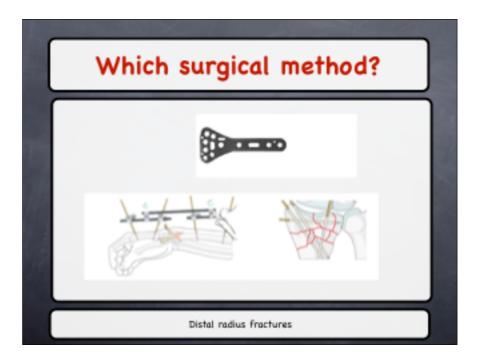
Unstable distal radius fractures

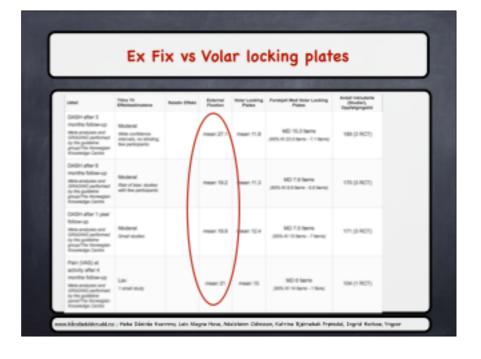
The key to offer a good and correct treatment is to understand which fractures are unstable when treated with PoP Distal radius fractures

When should surgery be considered? ≥ 10 * Dorsal angulation Radial shortening ≥ 2 mm Intra-articular step ≥2mm Dorsal and/or volar comminution Incongruence in DRUJ High energy trauma www.wristfrechure.no ; Hebe Désirée Kvernne, Leiv Magne Hove, Adalsheim Odinson,

Kahrine Bjørnebek Prønsdal, Ingrid Harboe, Yngvar Krukhaug


Conservative vs pinning Fundame grading Was a face of the second second


Conservative vs pinning | Fundamental | Marie | Marie


Bjørnebek Frønsdal, Ingrid Herboe, Yngver Krukheug

Ex Fix vs Volar locking plates

UMMI	Titles Til Effektestimatione	Relativ Effekt	Enternal Floation	Year Lacking Places	Ponsiget Weet Valor Locking Plates	Antali Introdute (Studies), Coolingingstol	
DRSH after 3 months follow-up lifety-analyses and ORASTRO participant by the politicipant group? The timespain discontage Centre	Moderal Mile confidence cramate, to display, fee participants	/		(MD 15.3 fame (875 KL23.0 fame - 7.1 fame)	169 (3 RCT)	
CMSH after 6 months follow-up filtro-majour and CMACHC performed by the position group? To trowspan fromtistip Cartes	Moderal flor of lose dubbs with the participants			-113	MD 7.8 fems (ISS ICE2 fems - 6.6 fems)	170 (3 RCT)	
DRÖH after 1 year follow-up lifety-analyses and ORACING performed by the politicise proup the titerespies documents Contin	Moderal Small studios		nuer 102	12 A	MO 7.5 flame STL KI 10 flame - 7 flame)	171 (3 407)	
Pain (VAS) at activity after 4 excivity after 4 months follow-up folial and year and OHADRIC partitional by the patients years (Tex Ryseagain focusings cards)	Lav Tanahasay	\			360-6 Serve (600-6 14 Serve - 1 Serv)	104 (1 ROT)	

Pinning vs Volar Locking Plates

shikullabiblenablen ; Haba Disirika Evarrens, Lais Alagra Hesa, Abbishoro Collesion, Kalvina Bjørnabah Prytsolol, Ingrid Horison, Yego

UMAR	Titre Til Effetteetimetere	Natural Charl	Percutaneous Prosing	Water Looking Plates	Fundant Med Voter Looking Pales	Artist hetude (Studies), (springinger)
Total complications after 0 months - 1 year	Láte Few participants, few exects (complications)	RR 0.24 (85,451.00 -1.00		43 per 1000	199 factors per 1900 (1975 H (197 factor) - 17 factor)	206 (4 PICT)
Serious complications after 6 months - 1 year	Vehicly law has participants, flow exects (complications)	RR 0.19 (RR 0.19 (100)	108 per 1000	21 par 1000	EF flores per 1000 pers AT TOTALING - E Rent	146 (2 RCT)
Mile complications after 1 year	Later Place participants, flow execute (conjunctations)	RR 0.58 (60%,40.5.06 -1.00)	126 per 1000	72 par 1000	52 flams per 100 pers 40 millione - 6 flams	176 (3 RCF)
Continuous Outcom	-					
CINEM when 3 months	Moderati Street studies.	SASH 0- 100	mean 28.7	mean 18-9	MO 5.6 feme (670.47 13.7 fem) - 3.6 femp	256 (4 RCT)
(oxion when 6 months	Later Street structure.	SASH 0- 100	mean 22	mean 10	MD 12 fairs (60% 41 16 1 fairs - 4 3 fairs)	160-(J RCT)
Condition offer 12 months	Cory 1 study liver	SASH 0- 100	\/	mean 13-2	MO 3.1 fems (60% 61 10 fems - 3.6 fems)	75 (2 RCT)

Pinning vs Volar Locking Plates

UMAI	Titre TI Offerteelinature	Relativ ETHIC	Percutaneous Prusing	Water Looking Plates	Foreignt Med Yoter Looking Pales	Artist tretudens (Studies), Opphagospens
Total complications after-ti months - 1 year	Later New participants, few exercis (complications)	RR 0.24 (85,40.68 -1.00	262 per 1000	43 per 1000	199 factors per 1900 (1975 H (197 factor) - 10 factor)	256 (4 RCT)
Serious complications after 6 months - 1 year	Vitality law flow participants, flow exercis (complications)	RR 0.19 (60%-0104 -1.00)	108 per 1000	21 par 1000	EF flores per 1000 pers AT TOTAL OF SAME	146 (2 RCT)
Mile complications after 1 year	Lav New participants, few events (congressions)	RR 0.58 (60%,40.530 -1.00)	136 per 1000	72 par 1000	52 flams per 100 pers 41 millione - 6 flams	176 (3 RCT)
Continuous Outcom	THE .					
CMSH when 3 months	Moderati Smart studies.	DASH 0- 100	mean 28.7	mean 18-9	MO 5.6 feme (670.47 13.7 fem- 3.6 femp	256 (4 RCT)
Continue to morning	Later Street streeten.	5ASH 0- 100	mean 22	mean 10	MD 12 fairs (60% 41 16 1 fairs - 4 3 fairs)	150 (2 NCT)
Condition after 12 months	Carr dray 1 study few	SASH 0- 100	mean 16.3	mar 13.2	MO 3.1 fame ,005 KI 10 fame - 3.6 fame	75 (2 RCT)

ona händistätinnakinn : Hata Däsnis Guarrena, Laiv Magna Brus, Rückteinn Gärnson, Kahrina Björnskat, Promissi, Dagrid Hartos, Yaguar Kruthawa

Pinning vs Volar Locking Plates

URM	Titre TI Effectsetmetere	Bulletin ETHIC	Percutaneous Prosing	Water Looking Plates	Punitpit Med Water Looking Plates	Artist tratta (Studies (system)
Yotal complications after-0 months - 1 pear	Lau Few participants, few exercis (complications)	RR 0.24 (RR 0.24 (1.00)	(200 (200)	60	199 factors per 1900 (1975 H (197 factor) - 17 factor)	256 (4 PK)
Serious complications after 6-months - 1 year	Vendig law few participants, few powers (complications)	RR 0.19 (695,400,00 -1.00)	108 par 1000	211 par 1000	EF flams per 1000 (50% AF TOF flams - 6 flams)	146-(2.90)
Mile complications after 1 year	Lav New participants, few exerts (conjectations)	RR 0.58 (60% R 0.50 -1.00)	136 par 1000	72 par 1000	52 flams per 100 pers 40 millione - 6 flessy	176-(3 RC)
Continuous Dutcom	-					
CINDH after 3 months	Moderati Street studies	DASH 0- 100	mean 28.7	man 18-9	MO 5.6 feme SITU II 13 fem - 3.6 femp	206-(4 RIC
(onlini after 6 mortifie	Late dimensionalism	DASH 0- 100	7000° 22	mean 10	MD 12 faire (60% 41 15 1 faire - 43 faire)	160 (J RC
(milm after 13 morths	Sate ding I study fee participants.	SASH 0- 100	/	F/	MO 3.1 feme (875.61 12 lene - 3.6 fem)	75-(2 RC1

mmuhlikullekitikmukkon ; Haka Distrik Guerreno, Lair Magna Reva, Rüshhairen Gülmiran, Kalrina Ejársakati Fryinskat, Engrid Harksa, Yagnar Krubhaug

Volar locking plates vs Ex-Fix/ Pinning & PoP

Weak recommendation

Consider choosing volar locking plates rather than percutaneous pinning for adult patients irrespective of age who meet the indication for operation.

Restraint should be exhibited with respect to using surgery for patients with a low functional level. By low functional level is meant permanent inability to deal independently with day-to-

Distal radius fractures

INCLUSION CRITERIA (STANDARDISATION?)

Aged 18 or over

Dorsally displaced fracture of the distal radius within 3 cm of the radio-carpal joint

The treating surgeon believed that the patient would benefit from surgical fixation of the fracture, and the fracture can be reduced by closed reduction

Achten et al; Joint J 2015;97-B:1082-9.

The DRAFFT-study

■ WRIST AND HAND

Cost effectiveness of treatment with percutaneous Kirschner wires avrauz volar locking plate for adult patients with a dorsally displaced fracture of the distal radius

ANALYSIS PROM THE DRAFFT TRIAL

We present an extensive constantion using data from the little faults. Acres from the flushes free (MANTE) is conjugate the extensive cost discriments of presentations for the little fault free or conjugate the extensive cost of present costs in the little fault for the little faults.

The cost of that data colding.

The cost of the data colding.

Note a death carrier, has some parader group, excessed stated, continued continued to which their place in 10 females carrier in the carrier fragmen. Due these the parameter and their place in 10 females carrier in the carrier fragment carrier carrier carrier containing a carrier or couples, despite and females carrier contains a loss over a 1-2 carrier parameter. after surgery, and all related purposition, which believes the cost of these off work and the

After the paper, and districtive programming the control for additional principle and the additional principle and the control for additional principle and the control for additional and Lacatively accepted to the solderface to accept the ESR of tolding-paid flustee compa with 4 wider. These were greater than ESR 600. Compared with tolding plate flustion, 6 with flustion is a local cashing interestion, a

Achten et al: Joint J 2015:97-B:1082-9.

DRAFFT TRIAL OUTCOME

No difference in functional outcome

K-wire fixation, however, is cheaper and quicker to perform.

Achten et al; Joint J 2015;97-B:1082-9.

BUT

Contrary to the existing literature, and against the rapidly increasing use of locking plate fixation

Achten et al.: Joint J 2015:97-B:1082-9.

WHAT HAVE WE LEARNT FROM FROM DRAFFT???

K wires may achieve a similar outcome when:

The fracture is dorsally displaced ONLY!

Can be reduced with closed technique

Is within the 2 week timeframe

K wire technique does not matter ???

Achten et al; Joint J 2015;97-B:1082-9.

DRAFFT TRIAL IN SMALL PRINT

Dorsally displaced distal radius fractures only

Exclusion of all significant intra-articular fractures that require an open reduction....

K wire technique and plating technique not standardised......

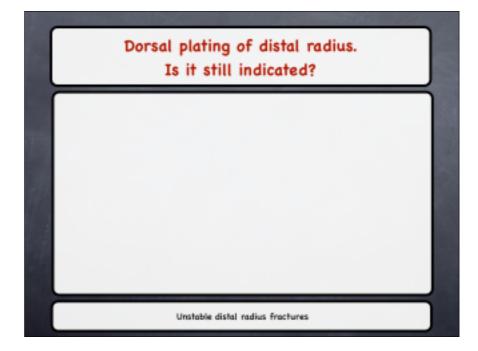
Dash score

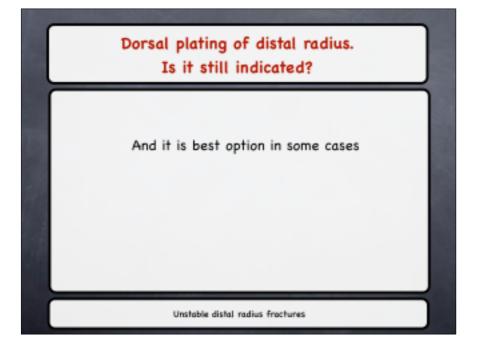
Achten et al: Joint J 2015:97-B:1082-9.

To do a good job you need a proper approach

Dorsal plating of distal radius.

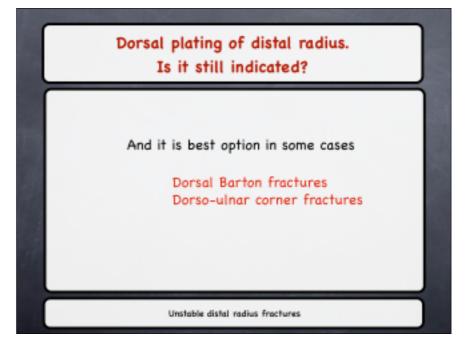
Is it still indicated?


Unstable distal radius fractures


Dorsal plating of distal radius.

Is it still indicated?

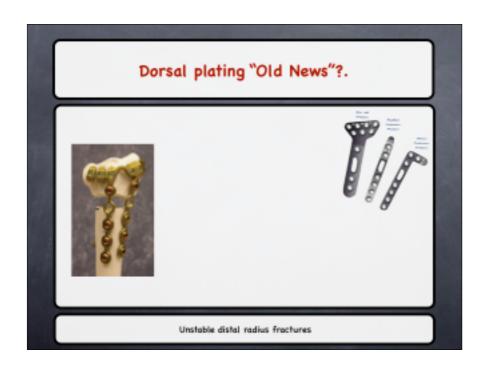
Yes, it is still indicated, sometimes...



Dorsal plating of distal radius. Is it still indicated? And it is best option in some cases Dorsal Barton fractures

Unstable distal radius fractures

Dorsal plating of distal radius.

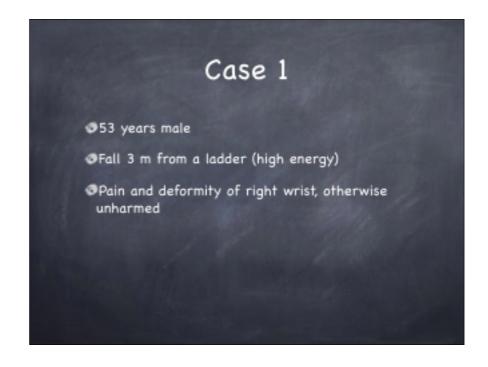

Is it still indicated?

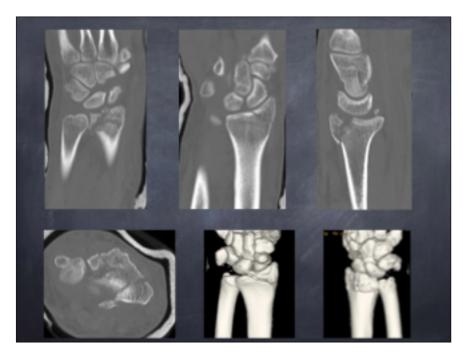
And it is best option in some cases

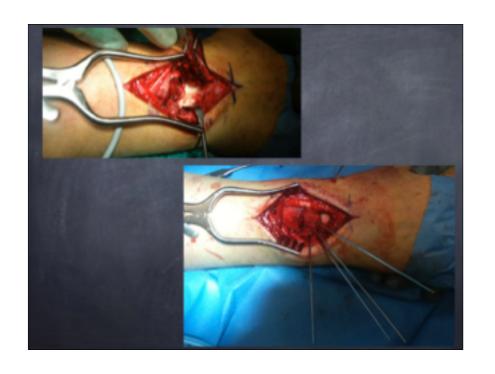
Dorsal Barton fractures
Dorso-ulnar corner fractures
Impacted articular fracture

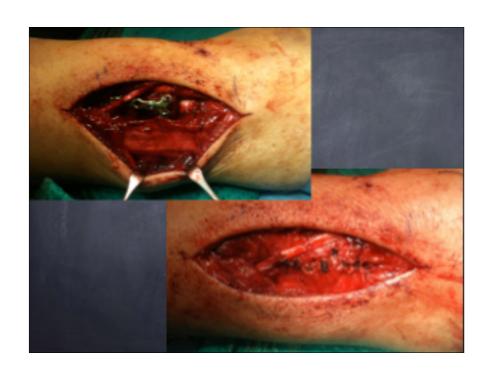
And it is best option in some cases

Dorsal Barton fractures
Dorso-ulnar corner fractures
Impacted articular fracture
Comminuted articular fractures
Unstable distal radius fractures

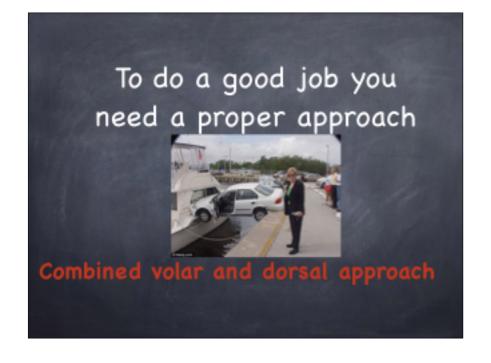


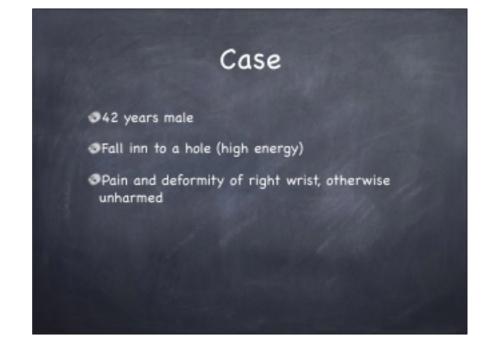


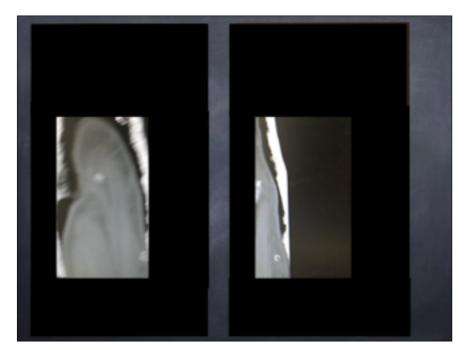


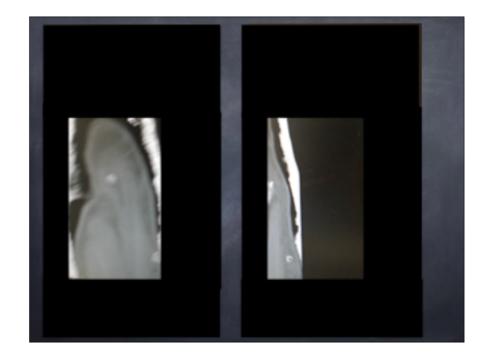


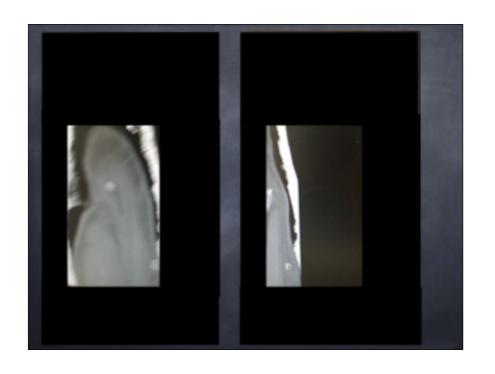


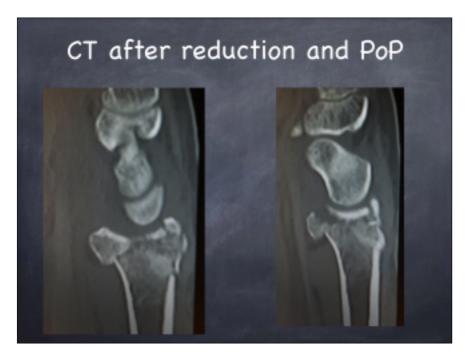


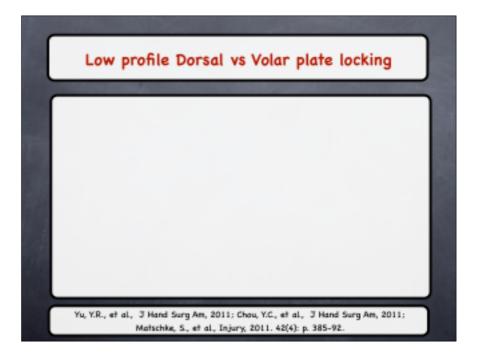












Low profile Dorsal vs Volar plate locking

Comparable radiological results

Yu, Y.R., et al., J Hand Surg Am, 2011; Chou, Y.C., et al., J Hand Surg Am, 2011; Matschke, S., et al., Injury, 2011. 42(4): p. 385-92.

Low profile Dorsal vs Volar plate locking

Comparable functional results

Comparable radiological results

No statistical differences in complication rate

Dorsal plate: Less tolerated? Volar plate: more neuropathic problems?

Yu, Y.R., et al., J Hand Surg Am, 2011; Chou, Y.C., et al., J Hand Surg Am, 2011; Matschke, S., et al., Injury, 2011, 42(4); p. 385-92.

Low profile Dorsal vs Volar plate locking

Comparable functional results

Comparable radiological results

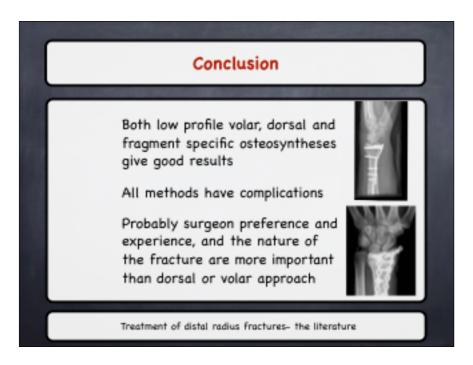
Yu, Y.R., et al., J Hand Surg Am, 2011; Chou, Y.C., et al., J Hand Surg Am, 2011; Matschke, S., et al., Injury, 2011. 42(4): p. 385-92.

What is ok to use , knowing the literature?

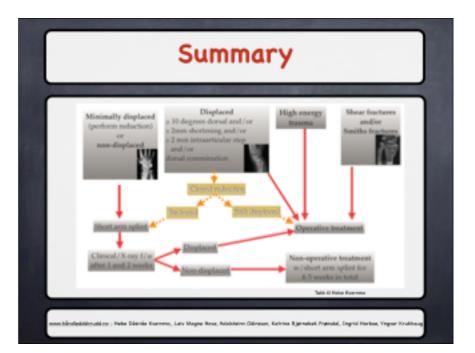
• A fractures: Volar anatomical fixed angle plates

Ex Fix and Wire and POP

• B fractures: Plates


• C Fractures: Cl and C2: Volar anatomical

fixed angle plates


C3: Anatomical fixed angle plates

or Ex Fix+pins

Leung et al., JBDS, 2008; Egol et al., JBDS, 2008; Wei et al., JBDS Am., 2009; Abramo et al. Orthop. 2009; Wilcke MKT et al. Acto Ort Scand, 2011; Oul Z, et al. Int Orthop 2011; 35;

